Man pages sections > man3 > Chipcard::PCSC

Chipcard::PCSC - Smart card reader interface library

PCSC(3pm) User Contributed Perl Documentation PCSC(3pm)


Chipcard::PCSC - Smart card reader interface library


 my $hContext = new Chipcard::PCSC();
 @ReadersList = $hContext->ListReaders ();
 $hContext->GetStatusChange(\@readers_states, $timeout);
 $apdu = Chipcard::PCSC::array_to_ascii(@apdu);
 @apdu = Chipcard::PCSC::ascii_to_array($apdu);
 $hContext = undef;


The PCSC module implements the Chipcard::PCSC class. Objects of this class are used to communicate with the PCSC-lite daemon (see pcscd(1) for more information).
PC/SC represents an abstraction layer to smart card readers. It provides a communication layer with a wide variety of smart card readers through a standardized API.
A PCSC object can be used to communicate with more than one reader through Chipcard::PCSC::Card objects. Please read Chipcard::PCSC::Card for extended information on how to talk to a smart card reader.
A PCSC object uses the following property: "$pcsc_object->{hContext}" the context returned by the pcsc library


The following methods can be used to construct a PCSC object:
$hContext = new Chipcard::PCSC($scope, $remote_host);
$scope is the scope of the connection to the PC/SC daemon. It can be any of the following:
 $Chipcard::PCSC::SCARD_SCOPE_USER     (not used by PCSClite);
 $Chipcard::PCSC::SCARD_SCOPE_TERMINAL (not used by PCSClite);
 $Chipcard::PCSC::SCARD_SCOPE_SYSTEM   Services on the local machine;
 $Chipcard::PCSC::SCARD_SCOPE_GLOBAL   Services on a remote host.
$remote_host is the host name of the remote machine to contact. It is only used when $scope is equal to $Chipcard::PCSC::SCARD_SCOPE_GLOBAL. A null value means localhost.
$hContext = new Chipcard::PCSC($scope);
This method is equivalent to:
 $hContext = new Chipcard::PCSC($scope, 0);
$hContext = new Chipcard::PCSC() ;
This method is equivalent to:
 $hContext = new Chipcard::PCSC($Chipcard::PCSC::SCARD_SCOPE_SYSTEM, 0);


Chipcard::PCSC constructors return an "undef" value when the object can not be created. $Chipcard::PCSC::errno can be used to get more information about the error. (See section "ERROR HANDLING" below for more information)


Here is a list of all the methods that can be used with a PCSC object.
hContext->ListReaders( $group );
This method returns the available readers in the given $group. If omitted, $group defaults to a null value meaning "all groups". Please note that as of this writing, $group can safely be omitted as it is not used by PCSClite.
The return value upon successful completion is an array of strings: one string by available reader. If an error occurred, the undef value is returned and $Chipcard::PCSC::errno should be used to get more information about the error. (See section "ERROR HANDLING" below for more information). The following example describes the use of ListReaders:
 $hContext = new Chipcard::PCSC();
 die ("Can't create the PCSC object: $Chipcard::PCSC::errno\n")
        unless (defined $hContext);
 @ReadersList = $hContext->ListReaders ();
 die ("Can't get readers' list: $Chipcard::PCSC::errno\n")
        unless (defined($ReadersList[0]));
 $, = "\n  ";
 print @ReadersList . "\n";
$hContext->GetStatusChange(\@readers_states, $timeout);
The method "$hContext->GetStatusChange(\@readers_states, $timeout)" uses a reference to a list of hashes.
 # create the list or readers to watch
 map { push @readers_states, ({'reader_name'=>"$_"}) } @ReadersList;
 @StatusResult = $hContext->GetStatusChange(\@readers_states);
The keys of the hash are: 'reader_name', 'current_state', 'event_state' and 'ATR'.
To detect a status change you have to first get the status and then copy the 'event_state' in the 'current_state'. The method will return when both states are different or a timeout occurs.
 @StatusResult = $hContext->GetStatusChange(\@readers_states);
 foreach $reader (@readers_states)
   $reader->{current_state} = $reader->{event_state};
 @StatusResult = $hContext->GetStatusChange(\@readers_states);
This method is equivalent to:
 $hContext->GetStatusChange(\@readers_states, 0xFFFFFFFF);
The timeout is set to infinite.
$apdu_ref = Chipcard::PCSC::ascii_to_array($apdu);
The method "Chipcard::PCSC::Card::Transmit()" uses references to arrays as in and out parameters. The "Chipcard::PCSC::ascii_to_array()" is used to transform an APDU in ASCII format to a reference to an array in the good format.
 $SendData = Chipcard::PCSC::ascii_to_array("00 A4 01 00 02 01 00");
$apdu = Chipcard::PCSC::array_to_ascii($apdu_ref);
This method is used to convert the result of a "Chipcard::PCSC::Card::Transmit()" into ASCII format.
 $RecvData = $hCard->Transmit($SendData);
 print Chipcard::PCSC::array_to_ascii($RecvData);


All functions from PCSC objects save the return value in a global variable called $Chipcard::PCSC::errno. This variable therefore holds the latest status of PCSC.
It is a double-typed magical variable that behaves just like $!. This means that it both holds a numerical value describing the error and the corresponding string. The numerical value may change from a system to another as it depends on the PCSC library...
Here is a small example of how to use it:
 $hContext = new Chipcard::PCSC();
 die ("Can't create the PCSC object: $Chipcard::PCSC::errno\n")
     unless (defined $hContext);
In case the last call was successful, $Chipcard::PCSC::errno contains the "SCARD_S_SUCCESS" status. Here is a list of all possible error codes. They are defined as read-only variables with in the PCSC module:
PCSClite users will also be able to use the following (PCSClite specific) codes:
In addition, the wrapper defines:


pcscd(1) manpage has useful information about PC/SC lite. Chipcard::PCSC::Card manpage gives information about how to communicate with a reader and the smart card inside it. (C) Lionel VICTOR & Ludovic ROUSSEAU, 2001-2004, GNU GPL (C) Ludovic ROUSSEAU, 2005-2008, GNU GPL


 Lionel VICTOR <>
 Ludovic ROUSSEAU <>
2017-07-22 perl v5.26.0